Цифровое КРУ серии «Волга» 10, 20, 35 кВ

Компания АО «ПО Элтехника» активно занимается усовершенствованием существующей линейки продукции, к которой относятся серийно выпускаемые коммутационные аппараты и распределительные устройства на номинальные напряжения 6-35 кВ, а также разработкой и внедрением новых продуктов. В ходе этой работы нашими специалистами была создана линейка цифровых вакуумных выключателей серии VF и собственное видение концепции построения цифровых подстанций на базе цифрового комплектного распределительного устройства КРУ серии «Волга» для распределительной сети 6-35 кВ.

Цифровая подстанция (ЦПС) — это подстанция с высоким уровнем автоматизации, в которой все процессы информационного обмена между элементами подстанции, а также управление работой подстанции осуществляются в цифровом виде на основе стандартов серии МЭК 61850.

На рис. 1 показана архитектура построения цифрового шкафа КРУ серии «Волга» для распределительной сети 6-35 кВ, которая заключается в применении интеллектуального цифрового первичного оборудования, устанавливаемого внутри шкафа КРУ, и в использовании кластерной технологии, так как данная технология построения ЦПС является более эффективной по сравнению с традиционными подходами к построению ЦПС.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Киргизия (996)312-96-26-47

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12
Казахстан (772)734-952-31

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Таджикистан (992)427-82-92-69 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Эл. почта enh@nt-rt.ru || Сайт: http://eltehnika.nt-rt.ru

Используемое в цифровом шкафу КРУ серии «Волга» первичное оборудование уже содержит встроенные интеллектуальные электронные устройства (ИЭУ), которые функционально и конструктивно ориентированы на поддержку информационного обмена и взаимодействия данными по цифровым локальным вычислительным сетям (ЛВС) с использованием сервисов стандарта МЭК 61850.

На рис.1 показан цифровой вычислительный кластер и основные ЛВС внутри цифрового шкафа КРУ, такие как: «Шина Процесса», «Шина Подстанции» и «Шина СТВН».

Цифровой вычислительный кластер (ЦВК) — это сегмент ЦПС, для которого характерно объединение определенного набора функций в виде программно реализованных интеллектуальных логических устройств, запускаемых на единой аппаратной платформе, на базе контроллерного оборудования, либо на базе промышленных серверных платформ реального времени с необходимой надежностью и степенью резервирования. В ЦВК могут быть объединены как несколько шкафов КРУ подстанции (например: все присоединения одной секции шин), так и все шкафы КРУ, установленные на подстанции, для выполнения функций: РЗА, АСУ ТП, РАС, АСКУЭ и т.д. При этом различные ЦВК могут использовать в качестве источника данных цифровые коммутационные аппараты, датчики тока и напряжения, установленные внутри одних и тех же шкафов КРУ. Данная архитектура построения позволяет не только унифицировать технические решения, но и сократить затраты и сроки изготовления цифровых шкафов КРУ серии «Волга».

Рис.2 Кластерная архитектура построения ЦПС 6-35кВ на базе шкафов КРУ серии «Волга».

На рис. 2 показан пример структурной схемы ЦПС, выполненной на базе цифровых шкафов КРУ серии «Волга» с использованием кластерной архитектуры.

Основные технические характеристики цифрового шкафа КРУ серии «Волга».

Напряжения	6-35 KB
Токи	до 4000А (40 кА)
Типовые архитектуры построения ЦПС согласно ПАО «Россети»	I, II, III, IV* (*ЦРЗА, *ЦВК)
Поддержка сервисов	MMS, GOOSE (MЭК 61850-8-1); Sampled Values (MЭК 61850-9-2, 61869-9); SV80, SV96, SV256, SV288.
Протоколы синхронизации времени	PTP v.2.1 (MЭK 61850-9-3, IEEE 1588), (S)NTP
Топология резервирования ЛВС	PRP, HSR
Терминал РЗА с поддержкой 61850	Любой, *ЦРЗА, *ЦВК
Вакуумный выключатель	Цифровой VF
Встроенная система мониторинга, управления и диагностики шкафа «KPY Smart View»	Поддержка цифровых протоколов обмена данными: МЭК 61850 (MMS, GOOSE); МЭК 60870-5-104 (101, 103); Modbus (RTU, TCP).
Телеуправление	ВВ, ВЭ, ЗРФ
Контроль телеуправления	Система технологического видеонаблюдения
Температурный контроль	Цифровые бесконтактные датчики «Контроль-Т»
Кибербезопасность	KICS Kaspersky, Garibaldi PCItek

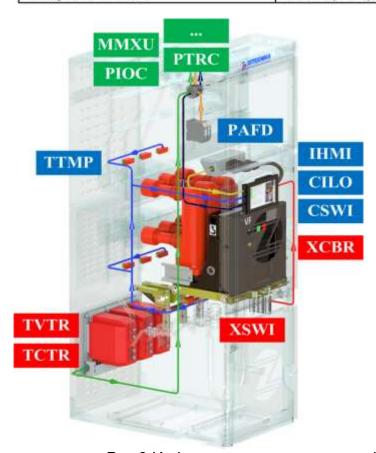


Рис.3 Информационная модель цифрового шкафа КРУ серии «Волга»

На рис.3 показана схема информационного взаимодействия ИЭУ цифрового шкафа КРУ серии «Волга».

Основными ИЭУ цифрового шкафа КРУ серии «Волга» являются:

- 1. Система мониторинга, управления и диагностики оборудования «КРУ Smart View» (рис.4);
- 2. Цифровые бесконтактные датчики температуры «Контроль-Т» (рис.5);

- 3. Интеллектуальный цифровой вакуумный выключатель серии VF (рис.6);
- 4. Система технологического видеонаблюдения (рис. 7).

Рис.4 Система мониторинга, управления и диагностики оборудования «КРУ Smart View».

Цифровой шкаф КРУ серии «Волга» подразумевает наличие развитой системы мониторинга, управления и диагностики оборудования шкафа КРУ, включающую в себя встроенную сенсорную панель с диагональю 10 дюймов промышленного исполнения, устанавливаемую на дверь отсека выкатного элемента шкафа КРУ серии «Волга».

Система мониторинга, управления и диагностики оборудования «КРУ Smart View» предназначена для контроля и управления основными электрическими и технологическими параметрами шкафа КРУ «Волга» в режиме реального времени и обеспечивает непрерывную проверку технического состояния оборудования, установленного внутри шкафа КРУ.

Система мониторинга, управления и диагностики оборудования «КРУ Smart View» позволяет осуществить переход от стратегии планово-предупредительного технического обслуживания и ремонта подстанционного оборудования на обслуживание «по техническому состоянию».

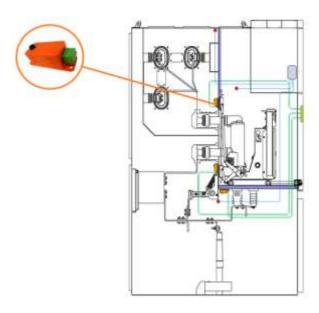


Рис.5 Шкаф КРУ серии «Волга» с цифровыми пирометрическими датчиками температуры «Контроль-Т».

Цифровой пирометрический датчик температуры «Контроль-Т» предназначен для непрерывного контроля температуры окружающего воздуха в месте установки датчика и бесконтактного контроля температуры, измеряемой на поверхности материала в реальном времени.

Применяется для бесконтактного измерения температуры в следующих зонах главных цепей шкафа КРУ серии «Волга»:

- контроль нагрева контактных соединений силового высоковольтного выключателя;
- контроль нагрева контактных соединений сборных шин;
- контроль нагрева мест соединения шин и оконцевания кабельных муфт находящихся под напряжением.

Рис.6 Цифровой вакуумный выключатель серии VF.

Применение цифровых вакуумных выключателей серии VF обеспечивает виртуализацию и интеллектуализацию первичного силового коммутационного оборудования уровня присоединения, что позволяет осуществить переход к применению цифровых централизованных терминалов РЗА (ЦРЗА), устанавливаемых в отдельных шкафах в помещении ЦПС.

Решение по использованию ЦРЗА позволяет значительно уменьшить стоимость затрат на оборудование ЦПС, сократив общее количество микропроцессорных терминалов РЗА и как следствие снизив общее количество оптических связей и промышленных Ethernet коммутаторов на подстанции, по

сравнению с традиционными решениями при сохранении показателей надежности и требуемой степени резервирования защит.

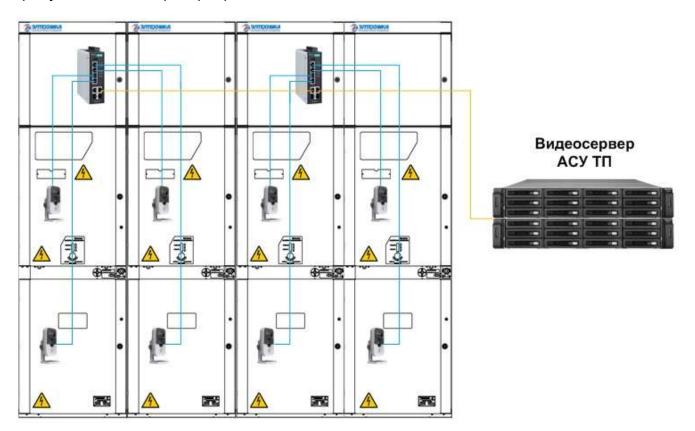


Рис.7 Система технологического видеонаблюдения шкафов КРУ серии «Волга».

На рис.7 показана система технологического видеонаблюдения шкафов КРУ серии «Волга», которая предназначена для удаленного визуального контроля за состоянием и процессом перемещения выкатного элемента, за работой шторочного механизма внутри изолированного отсека выкатного элемента, а также за положением и работой заземляющего ножа внутри изолированного отсека кабельных (шинных) присоединений. Система СТВН проста в установке и эксплуатации и позволяет оперативному персоналу в реальном времени удаленно наблюдать за коммутационными аппаратами и визуально оценивать контактные соединения.

Преимущества цифровых шкафов КРУ серии «Волга»:

- 1. Цифровые шкафы КРУ серии «Волга» могут быть интегрированы в цифровые подстанции I-III архитектур.
- 2. Цифровые шкафы КРУ серии «Волга», благодаря применению интеллектуальных вакуумных выключателей серии VF, могут быть интегрированы в цифровые подстанции с кластерной архитектурой построения (IV архитектура построения с применением решений ЦРЗА, ЦВК).

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Киргизия (996)312-96-26-47 Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Таджикистан (992)427-82-92-69 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93